Hybrid Proofs of the q-Binomial Theorem and Other Identities

نویسندگان

  • Dennis Eichhorn
  • James McLaughlin
  • Andrew V. Sills
چکیده

We give “hybrid” proofs of the q-binomial theorem and other identities. The proofs are “hybrid” in the sense that we use partition arguments to prove a restricted version of the theorem, and then use analytic methods (in the form of the Identity Theorem) to prove the full version. We prove three somewhat unusual summation formulae, and use these to give hybrid proofs of a number of identities due to Ramanujan. Finally, we use these new summation formulae to give new partition interpretations of the Rogers-Ramanujan identities and the RogersSelberg identities.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The q-Binomial Theorem and two Symmetric q-Identities

We notice two symmetric q-identities, which are special cases of the transformations of 2φ1 series in Gasper and Rahman’s book (Basic Hypergeometric Series, Cambridge University Press, 1990, p. 241). In this paper, we give combinatorial proofs of these two identities and the q-binomial theorem by using conjugation of 2-modular diagrams.

متن کامل

Combinatorial proofs of a kind of binomial and q-binomial coefficient identities

We give combinatorial proofs of some binomial and q-binomial identities in the literature, such as ∞ ∑ k=−∞ (−1)kq(9k2+3k)/2 [ 2n n + 3k ] = (1 + q) n−1 ∏ k=1 (1 + q + q) (n ≥ 1),

متن کامل

A Probabilistic Approach to Some of Eui,er's Number Theoretic Identities

Probabilistic proofs and interpretations are given for the q-binomial theorem, q-binomial series, two of Euler's fundamental partition identities, and for q-analogs of product expansions for the Riemann zeta and Euler phi functions. The underlying processes involve Bernoulli trials with variable probabilities. Also presented are several variations on the classical derangement problem inherent i...

متن کامل

Particle Seas and Basic Hypergeometric Series

The author introduces overpartitions and particle seas as a generalization of partitions. Both new tools are used in bijective proofs of basic hypergeometric identities like the q-binomial theorem, Jacobi’s triple product, q-Gauß equality or even Ramanujan’s 1Ψ1 summation. 1. Partitions In 1969, G. E. Andrews was already looking for bijective proofs for some basic hypergeometric identities. The...

متن کامل

Weighted quadrature rules with binomial nodes

In this paper, a new class of a weighted quadrature rule is represented as --------------------------------------------  where  is a weight function,  are interpolation nodes,  are the corresponding weight coefficients and denotes the error term. The general form of interpolation nodes are considered as   that  and we obtain the explicit expressions of the coefficients  using the q-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Electr. J. Comb.

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2011